Note on Topology

Zepeng CHEN
The HK PolyU

Date: January 11, 2023

1 Point-Set Topology

2 Convex set, combination, hull and cone

Definition 2.1 (Convex set)

A set $S \subset R^{n}$ is convex if $\forall \lambda \in[0,1]$ and $\forall x, x^{\prime} \in S, \lambda x+(1-\lambda) x^{\prime} \in S$.

Lemma 2.1 (Convex set's property)

1. $C:=$ convex set, $\beta:=$ real number, then $\beta C=\{x: x=\beta c, c \in C\}$ is convex.
2. $C, D:=$ convex set, then $C+D=\{x: x=c+d, c \in C, d \in D\}$ is convex.
3. $S, T:=$ convex set, then $S \cap T$ is a convex set.

Lemma 2.2

$C:=$ convex set, $y:=a$ point exterior to the closure of C. Then there is a vector a such that $a^{T} y<\inf _{x \in C} a^{T} x$.

Proof

$$
a^{T} y<\inf _{x \in C} a^{T} x \Longleftrightarrow \inf _{x \in C}\left(a^{T} x-a^{T} y\right)>0 \Longleftrightarrow \inf _{x \in C} a^{T}(x-y)>0
$$

That is equal to show that there exists $a^{T}(x-y)>0$, i.e., the included angle is acute. Define $f(x)=\|x-y\|$ (norm/distance). We want to $\min _{x \in C} f(x)$, find the point $x \in C$ closer to y. Since C is closure, there must be an optimal solution x^{0}, and $\left\|x^{0}-y\right\| \leq\|x-y\| \quad \forall x \in C$. Given x_{0}, let $x \in C$, then $\forall 0<\alpha<1, x_{0}+\alpha\left(x-x_{0}\right) \in C$ (Convex set definition). And

$$
\left\|x_{0}+\alpha\left(x-x_{0}\right)-y\right\| \geq\left\|x_{0}-y\right\|
$$

Expanding the inequation then we have $\alpha\left\|x-x_{0}\right\|^{2}+2\left|x_{0}-y\right|^{T}\left(x-x_{0}\right) \geq 0$, let $\alpha \rightarrow 0$, we have $\left|x_{0}-y\right|^{T}\left(x-x_{0}\right) \geq 0$, that is

$$
\left(x_{0}-y\right)^{\top} x \geqslant\left(x_{0}-y\right)^{\top} x_{0}=\left(x_{0}-y\right)^{T}\left(x_{0}-y+y\right)=\left(x_{0}-y\right)^{\top}\left(x_{0}-y\right)+\left(x_{0}-y\right)^{\top} y
$$

Let $a=\left(x_{0}-y\right)$, we have $a^{\top} x \geqslant a^{T} a+a^{\top} y$, since $a^{T} a$ is positive, a is what we want.

Figure 1: Conic Hull

Definition 2.2 (Convex combination)

$y=\sum_{i=1}^{m} \lambda_{i} y_{i}$ is a convex combination of y_{1}, \ldots, y_{m} if $\lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i}=1$.

Definition 2.3 (Cone, Convex Cone)

1. $C \subset R^{n}$ is a cone if $\forall x \in C, \alpha>0, \alpha x \in C$.
2. $C \subseteq R^{n}$ is a convex cone if $\forall x, y \in C, \alpha, \beta \geq 0, \alpha x+\beta y \in C$.

Example 2.1

Definition 2.4 (Convex hull)

Q is a convex hull of $v_{1}, . ., v_{k}$ if $Q=$ $\left\{v \in \Re^{n}: v\right.$ is a convex combination of $\left.v_{1}, v_{2}, \ldots, v_{k}\right\}, \quad$ and \quad we write $\quad Q \quad=$ $\operatorname{conv}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$.

Note on The convex hull of $S \subseteq \mathbb{R}^{n}$ is the smallest convex set containing S.
Property

1. Intersection of all convex sets containing S.
2. The set of all convex combinations of points in S.

Theorem 2.1 (Convex set and convex hull)

A set is convex iff convexhull $(S)=S$.

Definition 2.5 (Conic Hull, Closure of Cone)

1. Given a set S, the conic hull of S, denoted by cone (S), is the set of all conic combinations of the points in S, i.e., the smallest convex cone included S.

$$
\operatorname{cone}(S)=\left\{\sum_{i=1}^{n} \alpha_{i} x_{i} \mid \alpha_{i} \geq 0, x_{i} \in S\right\}
$$

2. Closure of cone $(S):=$ the closed convex hull of S.

Note on Conic hull is convex and includes the zero point.

Lemma 2.3
A closed bounded convex set in R^{n} is equal to the closed convex hull of its extreme points.

3 Hyperplane and Polytope

Theorem 3.1 (Projection Lemma?)

Let $X \in R^{m}$ be a nonempty closed convex set, and let $y \notin X$. Then there exists $x^{*} \in X$ with minimum distance from y, moreover, for all $x \in X$ we have $\left(y-x^{*}\right)^{\mathrm{T}}\left(x-x^{*}\right) \leq 0$.

Definition 3.1 (Hyperplane)

1. A set $H \subset R^{n}$ is a hyperplane $:=H=\left\{x \in R^{n}: \sum_{i=1}^{n} \alpha_{i} x_{i}=\beta\right\}$ for some $\beta \in R$ and some $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subset R^{n}$ such that $\alpha_{i} \neq 0$ for some i.
2. Positive half space of $H: H^{+}:=\left\{x \in R^{n}: \sum_{i=1}^{n} \alpha_{i} x_{i} \geqslant \beta\right\}$.
3. Negative half space of $H: H^{-}:=\left\{x \in R^{n}: \quad \sum_{i=1}^{n} \alpha_{i} x_{i} \leqslant \beta\right\}$

Example 3.1

1. If $n=1, H$ contains the point $\frac{\beta}{\alpha}$.
2. If $n=2$ and $\alpha_{1}, \alpha_{2} \neq 0, H$ is the line $\alpha_{1} x_{1}+\alpha_{2} x_{2}=\beta$.

Property

1. $H^{+} \cup H^{-}=R^{n}, \quad H^{+} \cap H^{-}=H$
2. A hyperplane H and its associated half spaces H^{+}and H^{-}are convex sets.

Lemma 3.1

$C:=$ convex set, $y:=a$ boundary point of C. Then there is a hyperplane containing y and containing C in one of its closed half space.

Proof Let H starts as the sequence of $\left\{y_{0}, y_{1}, \ldots, y\right\}$, according to lemma 2.2, $\forall y_{k}$, we have $a_{k}^{T} y_{k}<\inf _{x \in C} a_{k}^{T} x$, and converge to y we have $a^{T} y<\inf _{x \in C} a^{T} x$, that is, $\forall y_{k}, a_{k}=x_{0 k}-y_{k}$, and converge to for $y, a=0$. The hyperplane $a^{T} y$ is what we want.

Theorem 3.2 (Separating Hyperplane Theorem (ali_ahmadi_orf_2016))

1. If S and T are two disjoint convex sets in R^{n} then there is a hyperplane $H \subset R^{n}$ such that $S \subset H^{+}$and $T \subset H^{-}$.
2. Let C and D be two convex sets in R^{n} that do not intersect (i.e., $C \cap D=\emptyset$). Then, there exists $a \in R^{n}, a \neq 0, b \in R$, such that $a^{T} x \leq b$ for all $x \in C$ and $a^{T} x \geq b$ for all $x \in D$.
3. Special Case: Let C and D be two closed convex sets in R^{n} with at least one of them bounded, and assume $C \cap D=\emptyset$. Then $\exists a \in \mathbb{R}^{n}, a \neq 0, b \in \mathbb{R}$ such that

$$
a^{T} x>b, \forall x \in D \text { and } a^{T} x<b, \forall x \in C
$$

Note on Equality Note that the equality in this theorem cannot be neglected(_ali_ahmadi_orf_2016).

For example, for $A=(x, y): y \geq 0 \forall x \leq 0, y>0 \forall x>0$, then we can find $a=(1,0)^{T}, b=0$ to separate A, \bar{A}. However, there does not exists such a, b to separate withtout equality. The case of strict separate, i.e., $a^{T} x<b$ and $a^{T} x>b$ hold simultaneously, may not exist.
Proof [Special Case (ali_ahmadi_orf_2016)] Let $c \in C$ and $d \in D$ be the points with the minimal distance, i.e.,

$$
\begin{aligned}
\operatorname{dist}(C, D)= & \inf \|u-v\| \\
& \text { s.t. } u \in C, v \in D
\end{aligned}
$$

Furthermore, let

$$
a=d-c, b=\frac{\|d\|^{2}-\|c\|^{2}}{2}
$$

Then $f(x)=a^{T} x-b$ is the separating hyperplane what we want. We claims that

$$
f(x)>0, \forall x \in D \text { and } f(x)<0, \forall x \in C
$$

Note that we choose a to be perpendicular to $d c$, and b to ensure

$$
f\left(\frac{c+d}{2}\right)=(d-c)^{T}\left(\frac{c+d}{2}\right)-\frac{\|d\|^{2}-\|c\|^{2}}{2}=0
$$

Then we can prove $f(x)>0, \forall x \in D$ and $f(x)<0, \forall x \in C$. Suppose for the sake of contradiction that $\exists \bar{d} \in D$ with $f(\bar{d}) \leq 0$, i.e., $(d-c)^{T} \bar{d}-\frac{\|d\|^{2}-\|c\|^{2}}{2} \leq 0$. Since for $g(x)=\|x-c\|^{2}, \nabla g^{T}(d)(\bar{d}-d)<0$, we can find shorter distance, and this contradicts our assumption.

Corollary 3.1 (Separate point and convex set)

Let $C \subseteq \mathbb{R}^{n}$ be a closed convex set and $x \in R^{n}$ a point not in C. Then x and C can be strictly separated by a hyperplane.

Note on Special case: convex cone Particularly, if C is a convex cone, then we can find a horizontal plane through the origin to separate C and any point outside C, i.e., for any $x \notin C$, there exists nonzero $d \in R^{n}$ such that $d^{T} x<0\left(d^{T} y \geq 0\right)$ for all $y \in C$.

Definition 3.2 (Supporting hyperplane)

A hyperplane containing a convex set C in one of its closed half spaces, and containing a boundary point of C.

Lemma 3.2

Let C be a convex set, H a supporting hyperplane of C, and T the intersection of H and C. Every extreme point of T is an extreme point of C.

Proof Suppose there exists $x \in T$ such that x is not an extreme point of C, then it is enough to show that it is also not an extreme point of T. If so, there must exist $x_{1}, x_{2} \in C$, $x=\alpha x_{1}+(1-\alpha) x_{2}$. And x must belong to H (intersection), $a^{T} x=b=\alpha a^{T} x_{1}+(1-\alpha) a^{T} x_{2}$. Since C is in one of H 's half spaces, suppose C is in H^{+}, then we have $a^{T} x_{1} \geq b, a^{T} x_{2} \geq b$, $a^{T} x=b=\alpha a^{T} x_{1}+(1-\alpha) a^{T} x_{2} \geq \alpha b+(1-\alpha) b$. And it must be $a^{T} x_{1}=a^{T} x_{2}=b$. Thus,
x is also not an extreme point of T.

Theorem 3.3 (Farkas Lemma (ali_ahmadi_orf_2016))

Let $A \in R^{m \times n}$ and $b \in R^{m}$. Then exactly one of the following sets must be empty:

1. $\{x \mid A x=b, x \geq 0\}$
2. $\left\{y \mid A^{T} y \leq 0, b^{T} y>0\right\}$

Proof (ali_ahmadi_orf_2016)
(ii) to (i). Suppose there exists $A x=b, x \geq 0$, then we have $x^{T} A^{T} y=b^{T} y>0$, this contradicts our assumption.
(i) to (ii). Let a_{1}, \ldots, a_{n} denote all columns of A, and cone $\left\{b_{1}, \ldots, b_{n}\right\}$ denote the cone of all non-negative combinations. Then C is convex and closed. Let $\left\{z_{k}\right\}$ be a sequence of points in cone (S) converging to a point \bar{z}. Considering the following linear program:

$$
\begin{aligned}
& \min _{\alpha, z}\|z-\bar{z}\|_{\infty} \\
& \text { s.t. } \sum_{i=1}^{n} \alpha_{i} s_{i}=z \\
& \alpha_{i} \geq 0
\end{aligned}
$$

The objective value must be non-negative (norm), for each z_{k}, there exists α_{k} that makes the pair $\left(z_{k}, \alpha_{k}\right)$ feasible to the LP. As z_{k} get arbitrariliy close to \bar{z}, we conclude that the optimal value of this LP is zero. Since LP achieve their optimal values, it follows that $\bar{z} \in \operatorname{cone}(S)$.

Suppose there exists b which cannot be represented by A, i.e., $b \notin C$. On the basis of Separating Hyperplane Theorem, the point b and the set C can be (even strictly) separated; i.e.,

$$
\exists y \in \mathbb{R}^{m}, y \neq 0, r \in \mathbb{R} \text { s.t. } y^{T} z \leq r \forall z \in C \text { and } y^{T} b>r
$$

Since $0 \in C$, we must have $r \geq 0$. If $r>0$, we can replace it by $r^{\prime}=0$. For example, in the case of $y^{T} z>0$, we can increase α to large enough such that $y^{T}(\alpha z)$ is also large enough. However, $\alpha z \in C$ contradicts Separating Hyperplane Theorem, thus,

$$
y^{T} z \leq 0, \forall z \in C \text { and } y^{T} b>0
$$

Since $a_{1}, \ldots, a_{n} \in C$, we see that $A^{T} y \leq 0$.
Note on These two sets construct strong alternatives (ali_ahmadi_orf_2016), i.e., there is only one set is feasible. By contrast, weak alternatives means at least one set are feasible.

This theorem is useful to prove that LP is infeasible, if (2) holds, then (1) cannot hold.
Note on Geometric interpretation Let a_{1}, \ldots, a_{n} denote all columns of A, and cone $\left\{b_{1}, \ldots, b_{n}\right\}$ denote the cone of all non-negative combinations. Then only one of two cases will hold: b is in the cone, and b is not in the cone. Thus, we can separate b and the cone with a hyperplane (ali_ahmadi_orf_2016).

Figure 2: Geometric interpretation of the Farkas lemma

Theorem 3.4 (Farkas Lemma (P. Williamson, 2014, Lec. 7))

Let $A \in R^{m \times n}$ and $b \in R^{m}$. Then exactly one of the following sets must be empty:

1. $\{x \mid A x \leq b\}$
2. $\left\{y \mid A^{T} y=0, b^{T} y<0, y \geq 0\right\}$
$2^{\prime}\left\{y \mid A^{T} y=0, b^{T} y=-1, y \geq 0\right\}$

Proof First we prove that (2) iff (2'). The if side is clear. If (2) is true, let $\hat{y}=-\frac{1}{y^{T} b} y$ and this change (2) to (2').

Secondly, we cannot have both (1) and (2). Suppose otherwise, then we have $b^{T} y \geq 0$ contradicts our assumption.

Now suppose (1) does not hold, so (2') does not hold either. Define a new system $A^{T} y=$ $0, y^{T} b=-1$ as

$$
\bar{A}=\left[\begin{array}{c}
A^{T} \\
b^{T}
\end{array}\right] \quad \bar{b}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-1
\end{array}\right]
$$

If (2') holds, there does not exists $z \in R^{m}$ such that $z \geq 0$ and $\bar{A} z=\bar{b}$. Similarly, on the basis of Separating Hyperplane Theorem, there exists s such that $\bar{A}^{T} s \geq 0$ and $\bar{b}^{T} s<0$. Set s for $x \in R^{n}$ and $\lambda \in R$.

$$
s=\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]
$$

Then $\bar{b}^{T} s<0$ implies that

$$
\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-1
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
\lambda
\end{array}\right]<0
$$

which implies that $\lambda>0$. Also $\bar{A}^{T} s \geq 0$ implies that

$$
\left[\begin{array}{l}
A^{T} \\
b^{T}
\end{array}\right]^{T}\left[\begin{array}{l}
x \\
\lambda
\end{array}\right] \geq 0
$$

which implies that $A x+\lambda b \geq 0$ or that $A\left(\frac{-x}{\lambda}\right) \leq b$. Therefore $-x / \lambda$ satisfies (1), so that (1) holds.

Definition 3.3 (Polyhedron)

Polyhedron: $=P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}, A \in \mathbb{R}^{m \times n}, m \geq n$

Definition 3.4 (V-polytope, H-polytope (Toth et al., 2017, Ch. 15))

1. V-polytope: The convex hull of a finite set $X=\left\{x^{1}, \ldots, x^{n}\right\}$ of points in R^{d},

$$
P=\operatorname{conv}(X):=\left\{\sum_{i=1}^{n} \lambda_{i} x^{i} \mid \lambda_{1}, \ldots, \lambda_{n} \geq 0, \sum_{i=1}^{n} \lambda_{i}=1\right\}
$$

2. H-polytope: The solution set of a finite system of linear inequalities with the extra condition that the set of solutions is bounded.

$$
P=P(A, b):=\left\{x \in \mathbb{R}^{d} \mid a_{i}^{T} x \leq b_{i} \text { for } 1 \leq i \leq m\right\}
$$

Note on Polytope is a bounded polyhedron. Note that the definition in Luenberger and Ye (2015) is different from the main stream, here we adopt the definition from the main stream.

Definition 3.5 (Bounded Polyhedron)

A polyhedron P is bounded if $\exists M>0$, such that $\|x\| \leq M$ for all $x \in P$.

Lemma 3.3 (Main Theorem of Polytope Theory)

The definitions of V-polytopes and H-polytopes are equivalent. That is, every V-polytope has a description by a finite system of inequalities, and every H-polytope can be obtained as the convex hull of a finite set of points (its vertices).

Lemma 3.4 ((P. Williamson, 2014, Lec. 4))

Any polyhedron $P=\left\{x \in \Re^{n}: A x \leq b\right\}$ is convex.

Lemma 3.5 (Minkowski sum of Polytope)

Suppose that $P^{i}=\left\{x \geq 0: A^{i} x=b^{i}\right\}$ for $i=1,2$ are both bounded. Then $P=P^{1}+P^{2}$ is also a polytope, where $P^{1}+P^{2}=\left\{x^{1}+x^{2}: x^{1} \in P^{1}\right.$ and $\left.x^{2} \in P^{2}\right\}$.

Proposition 3.1 (Open Set and Optimality)

S is an open set if for each $x_{0} \in S$, there is an $\varepsilon>0$ such that $\left\|x-x_{0}\right\|<\varepsilon$ implies that $x \in S$. Show that if S is an open set, the problem Maximize $\left\{c^{T} x: x \in S\right\}$, where $c \neq 0$, does not possess an optimal point.

Proof Suppose for the sake of contradiction that there is an optimal point x_{0}, we can construct
another point $x_{0}+\varepsilon c$, where $\varepsilon>0$, an open feasible region means we can find a small ε to ensure $x_{0}+\varepsilon c \in S$, and then show that $x_{0}+\varepsilon c$ is optimal than x_{0}.

4 Extreme point, direction and Representation theorem

Definition 4.1 (Extreme Point)

A point x in a convex set C is an extreme point of C if there are no two distinct points x_{1}, x_{2} in C such that $x=\alpha x_{1}+(1-\alpha) x_{2} \in C$, for some $0<\alpha<1$.

Definition 4.2 (Ray)

A collection of points in the form of $\left\{x_{0}+\lambda d: \lambda \geq 0, d \neq 0\right\}$

Definition 4.3 (Direction of the Set)

A non-zero vector d is a direction of the convex set C if for each $x_{0} \in C$, the ray $\left\{x_{0}+\lambda d: \lambda \geq 0, d \neq 0\right\}$ also belongs to C.

Definition 4.4 (Extreme Direction)

A direction is an extreme direction of C if there are no two distinct directions d_{1}, d_{2} such that $d=\alpha d_{1}+(1-\alpha) d_{2} \in C$ for some $0<\alpha<1$.

Theorem 4.1 (Representation Theorem)

Let $X=\{x: A x=b, x \geq 0\}$ be a non-empty set. Then the set of extreme points is nonempty and has a finite number of elements, say x_{1}, \ldots, x_{k}. The set of extreme directions is empty iff X is bounded. If X is not bounded, then the set of extreme directions is nonempty and has a finite number of elements, say d_{1}, \ldots, d_{l}. Moreever, $\bar{x} \in X$ iff it can be represented as a convex combination of x_{1}, \ldots, x_{k} plus a non-negative linear combination of $d_{1}, . ., d_{l}$, that is,

$$
\bar{x}=\sum_{j=1}^{k} \lambda_{j} x_{j}+\sum_{j=1}^{l} u_{j} d_{j}, \quad \sum_{j=1}^{k} \lambda_{j}=1, \lambda_{j} \geq 0, j=1, \ldots, k ; u_{j} \geq 0, j=1, \ldots, l
$$

Note on Representation theorem shows that all solution \bar{x} can be represented in this way. On the basis of this representation, we can derive the optimal solution.

$$
\begin{align*}
& \min \sum_{i=1}^{n} c_{i} x_{i}=c^{T} x=c^{T}\left(\sum_{j=1}^{k} \lambda_{j} x_{j}+\sum_{j=1}^{l} u_{j} d_{j}\right) \\
& \quad \Longleftrightarrow \min _{\lambda_{j}, \mu_{j}} \sum_{j=1}^{k} \lambda_{j}\left(c^{T} x_{j}\right)+\sum_{j=1}^{l} u_{j}\left(c^{T} d_{j}\right) \tag{1}\\
& \text { s.t. } x \in X \quad \text { feasible set }
\end{align*}
$$

Iffeasible set is unbounded, $c^{T} d_{j}$ can be ≥ 0 or <0. When $c^{T} d_{j} \geq 0$, it is optimal to assign $u_{j}=0$. When $c^{T} d_{j}<0$, it is optimal to assign $u_{j}=-\infty$ (we say the problem is unbounded).

If feasible set is bounded, then there is no such d_{j}, i.e., there is no extreme direction. Thus, to optimize the problem, we can find the minimal $c^{T} x_{j}$ and let $\lambda_{j}=1$ and $\lambda_{i \neq j}=0$.

Bibliography

Luenberger, David G. and Yinyu Ye (July 2015). Linear and Nonlinear Programming. 4th ed. 2016 edition. New York, NY: Springer. Isbs: 978-3-319-18841-6.
P. Williamson, David (2014). ORIE 6300 Mathematical Programming I. Cornell University.

Toth, Csaba D., Joseph O’Rourke, and Jacob E. Goodman, eds. (Nov. 2017). Handbook of Discrete and Computational Geometry. 3rd edition. Boca Raton: Chapman and Hall/CRC. Isbs: 978-1-4987-1139-5.

