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1 Point-Set Topology

2 Convex set, combination, hull and cone

Definition 2.1 (Convex set)
A set S ⊂ Rn is convex if ∀λ ∈ [0, 1] and ∀x, x′ ∈ S, λx+ (1− λ)x′ ∈ S.

Lemma 2.1 (Convex set’s property)
1. C := convex set, β := real number, then βC = {x : x = βc, c ∈ C} is convex.

2. C,D := convex set, then C +D = {x : x = c+ d, c ∈ C, d ∈ D} is convex.

3. S, T := convex set, then S ∩ T is a convex set.

Lemma 2.2
C := convex set, y := a point exterior to the closure of C. Then there is a vector a such

that aT y < infx∈C aTx.

Proof
aT y < inf

x∈C
aTx ⇐⇒ inf

x∈C
(aTx− aT y) > 0 ⇐⇒ inf

x∈C
aT (x− y) > 0

That is equal to show that there exists aT (x − y) > 0, i.e., the included angle is acute. Define

f(x) = ||x − y|| (norm/distance). We want to minx∈C f(x), find the point x ∈ C closer to y.

Since C is closure, there must be an optimal solution x0, and ||x0 − y|| ≤ ||x − y|| ∀x ∈ C.

Given x0, let x ∈ C, then ∀0 < α < 1, x0 + α(x− x0) ∈ C (Convex set definition). And

||x0 + α(x− x0)− y|| ≥ ||x0 − y||

Expanding the inequation then we have α||x− x0||2 + 2|x0 − y|T (x− x0) ≥ 0, let α → 0, we

have |x0 − y|T (x− x0) ≥ 0, that is

(x0 − y)⊤ x ⩾ (x0 − y)⊤ x0 = (x0 − y)T (x0 − y + y) = (x0 − y)⊤ (x0 − y) + (x0 − y)⊤ y

Let a = (x0 − y), we have a⊤x ⩾ aTa+ a⊤y, since aTa is positive, a is what we want.
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2 Convex set, combination, hull and cone
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Figure 1: Conic Hull

Definition 2.2 (Convex combination)
y =

∑m
i=1 λiyi is a convex combination of y1, ..., ym if λi ≥ 0,

∑m
i=1 λi = 1.

Definition 2.3 (Cone, Convex Cone)
1. C ⊂ Rn is a cone if ∀x ∈ C,α > 0, αx ∈ C.

2. C ⊆ Rn is a convex cone if ∀x, y ∈ C,α, β ≥ 0, αx+ βy ∈ C.

Example 2.1

Definition 2.4 (Convex hull)
Q is a convex hull of v1, .., vk if Q =

{v ∈ ℜn : v is a convex combination of v1, v2, . . . , vk}, and we write Q =

conv (v1, v2, . . . , vk).

Note on The convex hull of S ⊆ Rn is the smallest convex set containing S.

Property
1. Intersection of all convex sets containing S.

2. The set of all convex combinations of points in S.

Theorem 2.1 (Convex set and convex hull)
A set is convex iff convexhull(S)=S.

Definition 2.5 (Conic Hull, Closure of Cone)
1. Given a set S, the conic hull of S, denoted by cone(S), is the set of all conic

combinations of the points in S, i.e., the smallest convex cone included S.

cone(S) =

{
n∑

i=1

αixi | αi ≥ 0, xi ∈ S

}
2. Closure of cone(S) := the closed convex hull of S.

Note on Conic hull is convex and includes the zero point.
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3 Hyperplane and Polytope

Lemma 2.3
A closed bounded convex set in Rn is equal to the closed convex hull of its extreme points.

3 Hyperplane and Polytope

Theorem 3.1 (Projection Lemma?)
Let X ∈ Rm be a nonempty closed convex set, and let y /∈ X . Then there exists x∗ ∈ X

with minimum distance from y, moreover, for all x ∈ X we have (y − x∗)T (x− x∗) ≤ 0.

Definition 3.1 (Hyperplane)
1. A setH ⊂ Rn is a hyperplane :=H = {x ∈ Rn :

∑n
i=1 αixi = β} for some β ∈ R

and some (α1, . . . , αn) ⊂ Rn such that αi ̸= 0 for some i.

2. Positive half space of H: H+ := {x ∈ Rn :
∑n

i=1 αixi ⩾ β}.

3. Negative half space of H: H− := {x ∈ Rn :
∑n

i=1 αixi ⩽ β}

Example 3.1
1. If n = 1, H contains the point β

α .

2. If n = 2 and α1, α2 ̸= 0, H is the line α1x1 + α2x2 = β.

Property
1. H+ ∪H− = Rn, H+ ∩H− = H

2. A hyperplane H and its associated half spaces H+ and H− are convex sets.

Lemma 3.1
C := convex set, y := a boundary point of C. Then there is a hyperplane containing y

and containing C in one of its closed half space.

Proof Let H starts as the sequence of {y0, y1, . . . , y}, according to lemma 2.2, ∀yk, we have

aTk yk < infx∈C aTk x, and converge to y we have aT y < infx∈C aTx, that is, ∀yk, ak = x0k−yk,

and converge to for y, a = 0. The hyperplane aT y is what we want. ■

Theorem 3.2 (Separating Hyperplane Theorem (ali_ahmadi_orf_2016))
1. If S and T are two disjoint convex sets in Rn then there is a hyperplane H ⊂ Rn

such that S ⊂ H+ and T ⊂ H−.

2. Let C and D be two convex sets in Rn that do not intersect (i.e., C ∩D = ∅). Then,

there exists a ∈ Rn, a ̸= 0, b ∈ R, such that aTx ≤ b for all x ∈ C and aTx ≥ b

for all x ∈ D.

3. Special Case: Let C and D be two closed convex sets in Rn with at least one of

them bounded, and assume C ∩D = ∅. Then ∃a ∈ Rn, a ̸= 0, b ∈ R such that

aTx > b,∀x ∈ D and aTx < b,∀x ∈ C

Note on Equality Note that the equality in this theorem cannot be neglected (ali_ahmadi_orf_2016).
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3 Hyperplane and Polytope

For example, for A = (x, y) : y ≥ 0∀x ≤ 0, y > 0∀x > 0, then we can find a = (1, 0)T , b = 0

to separate A,A. However, there does not exists such a, b to separate withtout equality. The case

of strict separate, i.e., aTx < b and aTx > b hold simultaneously, may not exist.

Proof [Special Case (ali_ahmadi_orf_2016)] Let c ∈ C and d ∈ D be the points with the

minimal distance, i.e.,
dist(C,D) = inf ∥u− v∥

s.t. u ∈ C, v ∈ D
.

Furthermore, let

a = d− c, b =
∥d∥2 − ∥c||2

2
.

Then f(x) = aTx− b is the separating hyperplane what we want. We claims that

f(x) > 0,∀x ∈ D and f(x) < 0,∀x ∈ C.

Note that we choose a to be perpendicular to dc, and b to ensure

f

(
c+ d

2

)
= (d− c)T

(
c+ d

2

)
− ∥d∥2 − ∥c∥2

2
= 0.

Then we can prove f(x) > 0, ∀x ∈ D and f(x) < 0, ∀x ∈ C. Suppose for the sake

of contradiction that ∃d ∈ D with f(d) ≤ 0, i.e., (d − c)T d̄ − ∥d∥2−∥c∥2
2 ≤ 0. Since for

g(x) = ∥x − c∥2, ∇gT (d)(d̄ − d) < 0, we can find shorter distance, and this contradicts our

assumption. ■

Corollary 3.1 (Separate point and convex set)
Let C ⊆ Rn be a closed convex set and x ∈ Rn a point not in C. Then x and C can be

strictly separated by a hyperplane.

Note on Special case: convex cone Particularly, if C is a convex cone, then we can find a

horizontal plane through the origin to separate C and any point outside C, i.e., for any x /∈ C,

there exists nonzero d ∈ Rn such that dTx < 0 (dT y ≥ 0) for all y ∈ C.

Definition 3.2 (Supporting hyperplane)
A hyperplane containing a convex set C in one of its closed half spaces, and containing

a boundary point of C.

Lemma 3.2
Let C be a convex set, H a supporting hyperplane of C, and T the intersection of H and

C. Every extreme point of T is an extreme point of C.

Proof Suppose there exists x ∈ T such that x is not an extreme point of C, then it is

enough to show that it is also not an extreme point of T . If so, there must exist x1, x2 ∈ C,

x = αx1+(1−α)x2. And xmust belong toH (intersection), aTx = b = αaTx1+(1−α)aTx2.

Since C is in one of H’s half spaces, suppose C is in H+, then we have aTx1 ≥ b, aTx2 ≥ b,

aTx = b = αaTx1 + (1− α)aTx2 ≥ αb+ (1− α)b. And it must be aTx1 = aTx2 = b. Thus,
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3 Hyperplane and Polytope

x is also not an extreme point of T . ■

Theorem 3.3 (Farkas Lemma (ali_ahmadi_orf_2016))
Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following sets must be empty:

1. {x | Ax = b, x ≥ 0}
2.

{
y | AT y ≤ 0, bT y > 0

}
Proof (ali_ahmadi_orf_2016)

(ii) to (i). Suppose there exists Ax = b, x ≥ 0, then we have xTAT y = bT y > 0, this

contradicts our assumption.

(i) to (ii). Let a1, ..., an denote all columns of A, and cone{b1, ..., bn} denote the cone of

all non-negative combinations. Then C is convex and closed. Let {zk} be a sequence of points

in cone(S) converging to a point z. Considering the following linear program:

min
α,z

∥z − z̄∥∞

s.t.
n∑

i=1

αisi = z

αi ≥ 0

The objective value must be non-negative (norm), for each zk, there exists αk that makes

the pair (zk, αk) feasible to the LP. As zk get arbitrariliy close to z, we conclude that the optimal

value of this LP is zero. Since LP achieve their optimal values, it follows that z ∈ cone(S).

Suppose there exists b which cannot be represented by A, i.e., b /∈ C. On the basis of

Separating Hyperplane Theorem, the point b and the set C can be (even strictly) separated; i.e.,

∃y ∈ Rm, y ̸= 0, r ∈ R s.t. yT z ≤ r∀z ∈ C and yT b > r

Since 0 ∈ C, we must have r ≥ 0. If r > 0, we can replace it by r′ = 0. For example, in

the case of yT z > 0, we can increase α to large enough such that yT (αz) is also large enough.

However, αz ∈ C contradicts Separating Hyperplane Theorem, thus,

yT z ≤ 0, ∀z ∈ C and yT b > 0

Since a1, ..., an ∈ C, we see that AT y ≤ 0. ■

Note on These two sets construct strong alternatives (ali_ahmadi_orf_2016), i.e., there is only

one set is feasible. By contrast, weak alternatives means at least one set are feasible.

This theorem is useful to prove that LP is infeasible, if (2) holds, then (1) cannot hold.

Note on Geometric interpretation Let a1, ..., an denote all columns of A, and cone{b1, ..., bn}
denote the cone of all non-negative combinations. Then only one of two cases will hold: b is

in the cone, and b is not in the cone. Thus, we can separate b and the cone with a hyperplane

(ali_ahmadi_orf_2016).
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3 Hyperplane and Polytope
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Figure 2: Geometric interpretation of the Farkas lemma

Theorem 3.4 (Farkas Lemma (P. Williamson, 2014, Lec. 7))
Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following sets must be empty:

1. {x | Ax ≤ b}
2.

{
y | AT y = 0, bT y < 0, y ≥ 0

}
2’

{
y | AT y = 0, bT y = −1, y ≥ 0

}
Proof First we prove that (2) iff (2’). The if side is clear. If (2) is true, let ŷ = − 1

yT b
y and this

change (2) to (2’).

Secondly, we cannot have both (1) and (2). Suppose otherwise, then we have bT y ≥ 0

contradicts our assumption.

Now suppose (1) does not hold, so (2’) does not hold either. Define a new system AT y =

0, yT b = −1 as

Ā =

 AT

bT

 b̄ =


0
...

0

−1


If (2’) holds, there does not existsz ∈ Rm such that z ≥ 0 and Āz = b̄. Similarly, on the basis

of Separating Hyperplane Theorem, there exists s such that ĀT s ≥ 0 and b̄T s < 0. Set s for

x ∈ Rn and λ ∈ R.

s =

 x

λ


Then b̄T s < 0 implies that 

0
...

0

−1



T  x

λ

 < 0
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3 Hyperplane and Polytope

which implies that λ > 0. Also ĀT s ≥ 0 implies that AT

bT

T  x

λ

 ≥ 0

which implies that Ax + λb ≥ 0 or that A
(−x

λ

)
≤ b. Therefore −x/λ satisfies (1), so that (1)

holds. ■

Definition 3.3 (Polyhedron)
Polyhedron:= P = {x ∈ Rn : Ax ≤ b} , A ∈ Rm×n,m ≥ n

Definition 3.4 (V-polytope, H-polytope (Toth et al., 2017, Ch. 15))
1. V-polytope: The convex hull of a finite set X =

{
x1, . . . , xn

}
of points in Rd,

P = conv(X) :=

{
n∑

i=1

λix
i | λ1, . . . , λn ≥ 0,

n∑
i=1

λi = 1

}
2. H-polytope: The solution set of a finite system of linear inequalities with the extra

condition that the set of solutions is bounded.

P = P (A, b) :=
{
x ∈ Rd | aTi x ≤ bi for 1 ≤ i ≤ m

}
Note on Polytope is a bounded polyhedron. Note that the definition in Luenberger and Ye (2015)

is different from the main stream, here we adopt the definition from the main stream.

Definition 3.5 (Bounded Polyhedron)
A polyhedron P is bounded if ∃M > 0, such that ||x|| ≤ M for all x ∈ P .

Lemma 3.3 (Main Theorem of Polytope Theory)
The definitions of V-polytopes and H-polytopes are equivalent. That is, every V-polytope

has a description by a finite system of inequalities, and every H-polytope can be obtained

as the convex hull of a finite set of points (its vertices).

Lemma 3.4 ((P. Williamson, 2014, Lec. 4))
Any polyhedron P = {x ∈ ℜn : Ax ≤ b} is convex.

Lemma 3.5 (Minkowski sum of Polytope)
Suppose thatP i =

{
x ≥ 0 : Aix = bi

}
for i = 1, 2 are both bounded. ThenP = P 1+P 2

is also a polytope, where P 1 + P 2 =
{
x1 + x2 : x1 ∈ P 1 and x2 ∈ P 2

}
.

Proposition 3.1 (Open Set and Optimality)
S is an open set if for each x0 ∈ S, there is an ε > 0 such that ||x− x0|| < ε implies that

x ∈ S. Show that if S is an open set, the problem Maximize {cTx : x ∈ S}, where c ̸= 0,

does not possess an optimal point.

Proof Suppose for the sake of contradiction that there is an optimal point x0, we can construct
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4 Extreme point, direction and Representation theorem

another point x0 + εc, where ε > 0, an open feasible region means we can find a small ε to

ensure x0 + εc ∈ S, and then show that x0 + εc is optimal than x0. ■

4 Extreme point, direction and Representation theorem

Definition 4.1 (Extreme Point)
A point x in a convex set C is an extreme point of C if there are no two distinct points

x1, x2 in C such that x = αx1 + (1− α)x2 ∈ C, for some 0 < α < 1.

Definition 4.2 (Ray)
A collection of points in the form of {x0 + λd : λ ≥ 0, d ̸= 0}

Definition 4.3 (Direction of the Set)
A non-zero vector d is a direction of the convex set C if for each x0 ∈ C, the ray

{x0 + λd : λ ≥ 0, d ̸= 0} also belongs to C.

Definition 4.4 (Extreme Direction)
A direction is an extreme direction of C if there are no two distinct directions d1, d2 such

that d = αd1 + (1− α)d2 ∈ C for some 0 < α < 1.

Theorem 4.1 (Representation Theorem)
Let X = {x : Ax = b, x ≥ 0} be a non-empty set. Then the set of extreme points is non-

empty and has a finite number of elements, say x1, ..., xk. The set of extreme directions

is empty iff X is bounded. If X is not bounded, then the set of extreme directions is non-

empty and has a finite number of elements, say d1, ..., dl. Moreever, x ∈ X iff it can be

represented as a convex combination of x1, ..., xk plus a non-negative linear combination

of d1, .., dl, that is,

x̄ =
k∑

j=1

λjxj +
l∑

j=1

ujdj ,
k∑

j=1

λj = 1, λj ≥ 0, j = 1, . . . , k;uj ≥ 0, j = 1, . . . , l

Note on Representation theorem shows that all solution x can be represented in this way. On

the basis of this representation, we can derive the optimal solution.

min
n∑

i=1

cixi = cTx = cT (
k∑

j=1

λjxj +
l∑

j=1

ujdj)

⇐⇒ min
λj ,µj

k∑
j=1

λj(c
Txj) +

l∑
j=1

uj(c
Tdj)

s.t.x ∈ X feasible set

(1)

If feasible set is unbounded, cTdj can be ≥ 0 or < 0. When cTdj ≥ 0, it is optimal to assign

uj = 0. When cTdj < 0, it is optimal to assign uj = −∞ (we say the problem is unbounded).
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4 Extreme point, direction and Representation theorem

If feasible set is bounded, then there is no such dj , i.e., there is no extreme direction. Thus,

to optimize the problem, we can find the minimal cTxj and let λj = 1 and λi ̸=j = 0.
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